Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Achilefu, Samuel; Raghavachari, Ramesh (Ed.)Invented in 2010, NanoCluster Beacons (NCBs) (1) are an emerging class of turn-on probes that show unprecedented capabilities in single-nucleotide polymorphism (2) and DNA methylation (3) detection. As the activation colors of NCBs can be tuned by a near-by, guanine-rich activator strand, NCBs are versatile, multicolor probes suitable for multiplexed detection at low cost. Whereas a variety of NCB designs have been explored and reported, further diversification and optimization of NCBs require a full scan of the ligand composition space. However, the current methods rely on microarray and multi-well plate selection, which only screen tens to hundreds of activator sequences (4, 5). Here we take advantage of the next-generation-sequencing (NGS) platform for high-throughput, large-scale selection of activator strands. We first generated a ~104 activator sequence library on the Illumina MiSeq chip. Hybridizing this activator sequence library with a common nucleation sequence (which carried a nonfluorescent silver cluster) resulted in hundreds of MiSeq chip images with millions of bright spots (i.e. light-up polonies) of various intensities and colors. With a method termed Chip-Hybridized Associated Mapping Platform (CHAMP) (6), we were able to map these bright spots to the original DNA sequencing map, thus recovering the activator sequence behind each bright spot. After assigning an “activation score” to each “light-up polony”, we used a computational algorithm to select the best activator strands and validate these strands using the traditional in-solution preparation and fluorometer measurement method. By exploring a vast ligand composition space and observing the corresponding activation behaviors of silver clusters, we aim to elucidate the design rules of NCBs.more » « less
-
In this paper, we propose a stepwise forward selection algorithm for detecting the effects of a set of correlated exposures and their interactions on a health outcome of interest when the underlying relationship could potentially be nonlinear. Though the proposed method is very general, our application in this paper remains to be on analysis of multiple pollutants and their interactions. Simultaneous exposure to multiple environmental pollutants could affect human health in a multitude of complex ways. For understanding the health effects of multiple environmental exposures, it is often important to identify and estimate complex interactions among exposures. However, this issue becomes analytically challenging in the presence of potential nonlinearity in the outcome‐exposure response surface and a set of correlated exposures. Through simulation studies and analyses of test datasets that were simulated as a part of a data challenge in multipollutant modeling organized by the National Institute of Environmental Health Sciences (http://www.niehs.nih.gov/about/events/pastmtg/2015/statistical/), we illustrate the advantages of our proposed method in comparison with existing alternative approaches. A particular strength of our method is that it demonstrates very low false positives across empirical studies. Our method is also used to analyze a dataset that was released from the Health Outcomes and Measurement of the Environment Study as a benchmark beta‐tester dataset as a part of the same workshop.more » « less
An official website of the United States government
